Search results for "viscosity solutions"
showing 10 items of 12 documents
Asymptotic mean value formulas for parabolic nonlinear equations
2021
In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of view in terms of dynamic programming principles for certain two-player, zero-sum games. peerReviewed
Objective function design for robust optimality of linear control under state-constraints and uncertainty
2009
We consider a model for the control of a linear network flow system with unknown but bounded demand and polytopic bounds on controlled flows. We are interested in the problem of finding a suitable objective function that makes robust optimal the policy represented by the so-called linear saturated feedback control. We regard the problem as a suitable differential game with switching cost and study it in the framework of the viscosity solutions theory for Bellman and Isaacs equations. © 2009 EDP Sciences, SMAI.
Asymptotic Mean-Value Formulas for Solutions of General Second-Order Elliptic Equations
2022
Abstract We obtain asymptotic mean-value formulas for solutions of second-order elliptic equations. Our approach is very flexible and allows us to consider several families of operators obtained as an infimum, a supremum, or a combination of both infimum and supremum, of linear operators. The families of equations that we consider include well-known operators such as Pucci, Issacs, and k-Hessian operators.
Solutions of nonlinear PDEs in the sense of averages
2012
Abstract We characterize p-harmonic functions including p = 1 and p = ∞ by using mean value properties extending classical results of Privaloff from the linear case p = 2 to all pʼs. We describe a class of random tug-of-war games whose value functions approach p-harmonic functions as the step goes to zero for the full range 1 p ∞ .
Remarks on regularity for p-Laplacian type equations in non-divergence form
2018
We study a singular or degenerate equation in non-divergence form modeled by the $p$-Laplacian, $$-|Du|^\gamma\left(\Delta u+(p-2)\Delta_\infty^N u\right)=f\ \ \ \ \text{in}\ \ \ \Omega.$$ We investigate local $C^{1,\alpha}$ regularity of viscosity solutions in the full range $\gamma>-1$ and $p>1$, and provide local $W^{2,2}$ estimates in the restricted cases where $p$ is close to 2 and $\gamma$ is close to 0.
Viscosity solutions of the Monge-Ampère equation with the right hand side in Lp
2007
We compare various notions of solutions of Monge-Ampère equations with discontinuous functions on the right hand side. Precisely, we show that the weak solutions defined by Trudinger can be obtained by the vanishing viscosity approximation method. Moreover, we investigate existence and uniqueness of Lp-viscosity solutions.
Regularity for nonlinear stochastic games
2015
We establish regularity for functions satisfying a dynamic programming equation, which may arise for example from stochastic games or discretization schemes. Our results can also be utilized in obtaining regularity and existence results for the corresponding partial differential equations. peerReviewed
A Viscosity Equation for Minimizers of a Class of Very Degenerate Elliptic Functionals
2013
We consider the functional $$J(v) = \int_\varOmega\bigl[f\bigl(|\nabla v|\bigr) - v\bigr] dx, $$ where Ω is a bounded domain and f:[0,+∞)→ℝ is a convex function vanishing for s∈[0,σ], with σ>0. We prove that a minimizer u of J satisfies an equation of the form $$\min\bigl(F\bigl(\nabla u, D^2 u\bigr), |\nabla u|-\sigma\bigr)=0 $$ in the viscosity sense.
Hölder regularity for the gradient of the inhomogeneous parabolic normalized p-Laplacian
2018
In this paper, we study an evolution equation involving the normalized [Formula: see text]-Laplacian and a bounded continuous source term. The normalized [Formula: see text]-Laplacian is in non-divergence form and arises for example from stochastic tug-of-war games with noise. We prove local [Formula: see text] regularity for the spatial gradient of the viscosity solutions. The proof is based on an improvement of flatness and proceeds by iteration.
Robust optimality of linear saturated control in uncertain linear network flows
2008
We propose a novel approach that, given a linear saturated feedback control policy, asks for the objective function that makes robust optimal such a policy. The approach is specialized to a linear network flow system with unknown but bounded demand and politopic bounds on controlled flows. All results are derived via the Hamilton-Jacobi-Isaacs and viscosity theory.