Search results for "viscosity solutions"

showing 10 items of 12 documents

Asymptotic mean value formulas for parabolic nonlinear equations

2021

In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of view in terms of dynamic programming principles for certain two-player, zero-sum games. peerReviewed

osittaisdifferentiaaliyhtälötasymptotic mean value formulasparabolic nonlinear equationsMathematics - Analysis of PDEsviscosity solutionsGeneral MathematicsFOS: MathematicsMathematics::Analysis of PDEsparabolic Monge–Ampère equationsAnalysis of PDEs (math.AP)
researchProduct

Objective function design for robust optimality of linear control under state-constraints and uncertainty

2009

We consider a model for the control of a linear network flow system with unknown but bounded demand and polytopic bounds on controlled flows. We are interested in the problem of finding a suitable objective function that makes robust optimal the policy represented by the so-called linear saturated feedback control. We regard the problem as a suitable differential game with switching cost and study it in the framework of the viscosity solutions theory for Bellman and Isaacs equations. © 2009 EDP Sciences, SMAI.

Flow control (data)Mathematical optimizationControl and OptimizationControl (management)State (functional analysis)Optimal control viscosity solutions differential games switching flow control networksOptimal controlComputational MathematicsControl and Systems EngineeringControl theoryViscosity (programming)Bounded functionDifferential gameMathematicsLinear control
researchProduct

Asymptotic Mean-Value Formulas for Solutions of General Second-Order Elliptic Equations

2022

Abstract We obtain asymptotic mean-value formulas for solutions of second-order elliptic equations. Our approach is very flexible and allows us to consider several families of operators obtained as an infimum, a supremum, or a combination of both infimum and supremum, of linear operators. The families of equations that we consider include well-known operators such as Pucci, Issacs, and k-Hessian operators.

osittaisdifferentiaaliyhtälötviscosity solutionsMathematics - Analysis of PDEsGeneral MathematicsFOS: MathematicsStatistical and Nonlinear Physicsmean-value formulasIssacs equationk-Hessian equationAnalysis of PDEs (math.AP)
researchProduct

Solutions of nonlinear PDEs in the sense of averages

2012

Abstract We characterize p-harmonic functions including p = 1 and p = ∞ by using mean value properties extending classical results of Privaloff from the linear case p = 2 to all pʼs. We describe a class of random tug-of-war games whose value functions approach p-harmonic functions as the step goes to zero for the full range 1 p ∞ .

Class (set theory)Mean value theoremMathematics(all)Dynamic programming principleGeneral MathematicsAsymptotic expansion01 natural sciences1-harmonicApplied mathematics0101 mathematicsMathematicsp-harmonicApplied Mathematics010102 general mathematicsMathematical analysista111Zero (complex analysis)Sense (electronics)010101 applied mathematicsNonlinear systemRange (mathematics)Two-player zero-sum gamesMean value theorem (divided differences)Viscosity solutionsAsymptotic expansionValue (mathematics)Stochastic gamesJournal de Mathématiques Pures et Appliquées
researchProduct

Remarks on regularity for p-Laplacian type equations in non-divergence form

2018

We study a singular or degenerate equation in non-divergence form modeled by the $p$-Laplacian, $$-|Du|^\gamma\left(\Delta u+(p-2)\Delta_\infty^N u\right)=f\ \ \ \ \text{in}\ \ \ \Omega.$$ We investigate local $C^{1,\alpha}$ regularity of viscosity solutions in the full range $\gamma>-1$ and $p>1$, and provide local $W^{2,2}$ estimates in the restricted cases where $p$ is close to 2 and $\gamma$ is close to 0.

viscosity solutionsintegrability of second derivativesType (model theory)01 natural sciencesDivergencelocal C1ViscosityMathematics - Analysis of PDEsFOS: Mathematicspartial differential equations0101 mathematicsMathematicsMathematical physicsosittaisdifferentiaaliyhtälötα regularityApplied Mathematics010102 general mathematicsta111p-Laplacianlocal C1α regularityviskositeettiDegenerate equation35J60 35B65 35J92010101 applied mathematicsviscosityp-LaplacianAnalysisAnalysis of PDEs (math.AP)Journal of Differential Equations
researchProduct

Viscosity solutions of the Monge-Ampère equation with the right hand side in Lp

2007

We compare various notions of solutions of Monge-Ampère equations with discontinuous functions on the right hand side. Precisely, we show that the weak solutions defined by Trudinger can be obtained by the vanishing viscosity approximation method. Moreover, we investigate existence and uniqueness of Lp-viscosity solutions.

Monge-Ampère equationsViscosityClassical mechanicsViscosity solutions; weak solutions; Monge-Ampère equationsSettore MAT/05 - Analisi MatematicaGeneral MathematicsViscosity solutionsweak solutionsMathematical analysisMonge–Ampère equationMathematics
researchProduct

Regularity for nonlinear stochastic games

2015

We establish regularity for functions satisfying a dynamic programming equation, which may arise for example from stochastic games or discretization schemes. Our results can also be utilized in obtaining regularity and existence results for the corresponding partial differential equations. peerReviewed

viscosity solutionsDiscretization01 natural sciencesMathematics - Analysis of PDEsBellman equationComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsApplied mathematicstug-of-war0101 mathematicsMathematics - Optimization and ControlMathematical PhysicsMathematicsstokastiset prosessitPartial differential equationApplied Mathematics91A15 35J92 35B65 35J60 49N60010102 general mathematicsta111dynamic programming principletug-of-war with noise with space dependent probabilities010101 applied mathematicsNonlinear systemOptimization and Control (math.OC)p-LaplaceAnalysisAnalysis of PDEs (math.AP)
researchProduct

A Viscosity Equation for Minimizers of a Class of Very Degenerate Elliptic Functionals

2013

We consider the functional $$J(v) = \int_\varOmega\bigl[f\bigl(|\nabla v|\bigr) - v\bigr] dx, $$ where Ω is a bounded domain and f:[0,+∞)→ℝ is a convex function vanishing for s∈[0,σ], with σ>0. We prove that a minimizer u of J satisfies an equation of the form $$\min\bigl(F\bigl(\nabla u, D^2 u\bigr), |\nabla u|-\sigma\bigr)=0 $$ in the viscosity sense.

Viscosity solutions minimizer of convex functionals very degenerate elliptic functionalsClass (set theory)Pure mathematicsSettore MAT/05 - Analisi MatematicaBounded functionMathematical analysisDomain (ring theory)Degenerate energy levelsNabla symbolViscosity solutionConvex functionMathematics
researchProduct

Hölder regularity for the gradient of the inhomogeneous parabolic normalized p-Laplacian

2018

In this paper, we study an evolution equation involving the normalized [Formula: see text]-Laplacian and a bounded continuous source term. The normalized [Formula: see text]-Laplacian is in non-divergence form and arises for example from stochastic tug-of-war games with noise. We prove local [Formula: see text] regularity for the spatial gradient of the viscosity solutions. The proof is based on an improvement of flatness and proceeds by iteration.

viscosity solutionsApplied MathematicsGeneral Mathematicsta111010102 general mathematicsMathematical analysisparabolic01 natural sciencesNoise (electronics)non-homogeneouslocal C-alpha regularityTerm (time)010101 applied mathematicsViscosityBounded functionNon homogeneousEvolution equationp-Laplacian0101 mathematicsnormalized p-LaplacianFlatness (mathematics)MathematicsCommunications in Contemporary Mathematics
researchProduct

Robust optimality of linear saturated control in uncertain linear network flows

2008

We propose a novel approach that, given a linear saturated feedback control policy, asks for the objective function that makes robust optimal such a policy. The approach is specialized to a linear network flow system with unknown but bounded demand and politopic bounds on controlled flows. All results are derived via the Hamilton-Jacobi-Isaacs and viscosity theory.

Inventory controlMathematical optimizationControl theoryViscosity (programming)Bounded functionLinear systemOptimal control Robust optimization Inventory control Viscosity solutionsTrajectoryRobust optimizationSettore MAT/09 - Ricerca OperativaRobust controlOptimal controlMathematics2008 47th IEEE Conference on Decision and Control
researchProduct